翻訳と辞書
Words near each other
・ Prescott, Iowa
・ Prescott, Kansas
・ Prescott, Massachusetts
・ Prescott, Michigan
・ Prescott, Ontario
・ Prescott, Oregon
・ Prescott, Washington
・ Prescott, Wisconsin
・ Prescott-Brown
・ Prescottia
・ Prescottia (orchid)
・ Prescottiinae
・ PreScouter
・ Prescreen
・ Prescribed Ricci curvature problem
Prescribed scalar curvature problem
・ Prescribed senior official
・ Prescribed sum
・ Prescription
・ Prescription (sovereignty transfer)
・ Prescription Act 1832
・ Prescription analytics
・ Prescription bottle
・ Prescription cascade
・ Prescription charges
・ Prescription costs
・ Prescription drug
・ Prescription Drug Marketing Act
・ Prescription drug prices in the United States
・ Prescription drug purchasing pool


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Prescribed scalar curvature problem : ウィキペディア英語版
Prescribed scalar curvature problem
In Riemannian geometry, a branch of mathematics, the prescribed scalar curvature problem is as follows: given a closed, smooth manifold ''M'' and a smooth, real-valued function ''ƒ'' on ''M'', construct a Riemannian metric on ''M'' whose scalar curvature equals ''ƒ''. Due primarily to the work of J. Kazdan and F. Warner in the 1970s, this problem is well-understood.
== The solution in higher dimensions ==
If the dimension of ''M'' is three or greater, then any smooth function ''ƒ'' which takes on a negative value somewhere is the scalar curvature of some Riemannian metric. The assumption that ''ƒ'' be negative somewhere is needed in general, since not all manifolds admit metrics which have strictly positive scalar curvature. (For example, the three-dimensional torus is such a manifold.) However, Kazdan and Warner proved that if ''M'' does admit some metric with strictly positive scalar curvature, then any smooth function ''ƒ'' is the scalar curvature of some Riemannian metric.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Prescribed scalar curvature problem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.